Norm closed operator ideals in Lorentz sequence spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed norm and multidimensional Lorentz spaces

Abstract. In the last decade, the problem of characterizing the normability of the weighted Lorentz spaces has been completely solved ([16], [7]). However, the question for multidimensional Lorentz spaces is still open. In this paper, we consider weights of product type, and give necessary and sufficient conditions for the Lorentz spaces, defined with respect to the two-dimensional decreasing r...

متن کامل

Orlicz-Garling sequence spaces of difference operator and their domination in Orlicz-Lorentz spaces

We introduce new classes of generalized Orlicz-Garling sequences and Orlicz-Lorentz sequences by using a sequence of Orlicz functions and difference operator. We show that the Orlicz-Garling sequence space admits a unique 1-subsymmetric basis and a 1-dominated block basic sequence in [Formula: see text]. We also make an effort to prove that every symmetric normalized block Orlicz-Garling sequen...

متن کامل

New Tensor Norms and Operator Ideals Associated to Interpolation Spaces Between Sequence Spaces

We introduce a wide class of tensor norms gλ,ρ which are defined with the help of interpolation spaces between perfect sequence spaces defined by a general parameter real interpolation method. We also characterize the associated λρ-nuclear and λρintegral operators.

متن کامل

ON NORM CLOSED IDEALS IN L(lp, lq)

Given two Banach spaces X and Y , we write L(X, Y ) for the space of all continuous linear operators from X to Y . A linear subspace J of L(X, Y ) is said to be an ideal if ATB ∈ J whenever A ∈ L(Y ), T ∈ J , and B ∈ L(X). It is known (see, e.g., Caradus:74 [CPY74]) that the only norm closed ideal in L(lp), 1 6 p < ∞ is the ideal of compact operators. The structure of closed ideals in L(lp ⊕ lq...

متن کامل

One - Sided M - Ideals and Multipliers in Operator Spaces , I

The theory of M-ideals and multiplier mappings of Banach spaces naturally generalizes to left (or right) M-ideals and multiplier mappings of operator spaces. These subspaces and mappings are intrinsically characterized in terms of the matrix norms. In turn this is used to prove that the algebra of left adjointable mappings of a dual operator space X is a von Neumann algebra. If in addition X is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2012

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2011.11.034